Gian hàng bán Rao vặt Hỏi đáp Thêm
Thông báo Hỗ trợ Đăng ký Đăng nhập
2 thành viên trả lời
haohao22 hiroximacu Trả lời cuối cùng: 13/07/2012
Thành viên tích cực nhất

lexuanquan

1 lượt cảm ơn

J3urning

1 lượt cảm ơn

anhcuong83vn

1 lượt cảm ơn

Xin chỉ dùm mình cách tính lim(x->xo-) va lim(x->xo+) cho minh vd để dể hiểu nha!?

hiroximacu

13/07/2012 - 09:29

Vui lòng đăng nhập ID VATGIA để gửi trả lời của bạn

hiroximacu

13/07/2012 - 21:58

Trích dẫn:
Từ bài viết của haohao22

Trong trường hợp tổng quát giới hạn của dạng f(x)/g(x) khi mà cả f(x)->0 và g(x)->0 khi x->a và được gọi là một dạng vô định có dạng 0/0. Chúng ta đã từng gặp các giới hạn có dạng phân thức và có thể đơn giản cặp thừa số ở mẫu làm cho mẫu số bằng không bằng cách dùng một số phép biến đổi thông thường như lim (x^2 - x)/(x^2-1) khi x->1 hoặc có thể dùng hình học để tìm giới hạn cho bài nầy: lim sin(x)/x khi x->0
Nhưng những phương pháp nầy không thể áp dụng được cho lim [ln(x)/(x-1)] khi x->1
Khi xác định giới hạn nầy chúng ta không thể lợi dụng tính chất lim của thương là thương lim vì khi x->1 thì cả tử số lẫn mẫu số đều tiến đến 0 và 0/0 là không xác định.
Một phương pháp có hệ thống được ra đời dùng cho việc xác định giới hạn cho các dạng vô định được gọi là quy tắc L' Hospital

Giả sử rằng f và g đều có đạo hàm và g'(x) khác 0. Giả sử rằng:
lim f(x)=0 khi x->a và lim g(x)=0 khi x->a, hoặc
lim f(x)=+/-vô cực và lim g(x)=+/-vô cực khi x->a thì
lim f(x)/g(x)=lim f'(x)/g'(x) khi x->a
nếu giới hạn bên phải tồn tại (hoặc là vô cực hoặc trừ vô cực)

vd

l = lim [√(4x + 1) - √(9x - 2) + 1] / [√(5x + 7) - 3]
x --> 2

= lim [√(4x + 1) - 3 + 4 - √(9x - 2)] / [√(5x + 7) - 3]
x --> 2

= lim[√(4x + 1) - 3]/[√(5x + 7) - 3] + lim [4 - √(9x - 2)]/[√(5x + 7) - 3]
x --> 2

*lim[√(4x + 1) - 3]/[√(5x + 7) - 3] =
x --> 2

= lim(4x - 8)[√(5x + 7) + 3.√(5x + 7) + 9] / [√(4x + 1) + 3][5x - 20]
x --> 2

= lim 4[√(5x + 7) + 3.√(5x + 7) + 9] / [√(4x + 1) + 3]5(x + 2)
x --> 2

= 4.[3 + 3 + 9] / 5[3 + 3](2 + 2) = 9 / 10

*lim [4 - √(9x - 2)]/[√(5x + 7) - 3] =
x --> 2

= lim (18 - 9x)[√(5x + 7) + 3.√(5x + 7) + 9] / [4 + √(9x - 2)][5x - 20]
x --> 2

= lim (-9)[√(5x + 7) + 3.√(5x + 7) + 9] / [4 + √(9x - 2)]5(x + 2)
x --> 2

= (-9)[3 + 3 + 9] / [4 + 4]5(2 + 2) = - 243 / 160

Vây:
l = 9/10 - 243/160 = - 99 /160


kai minh doi la lim(x->Xo-) va Xo+ ak ban!

haohao22

13/07/2012 - 12:26

Trong trường hợp tổng quát giới hạn của dạng f(x)/g(x) khi mà cả f(x)->0 và g(x)->0 khi x->a và được gọi là một dạng vô định có dạng 0/0. Chúng ta đã từng gặp các giới hạn có dạng phân thức và có thể đơn giản cặp thừa số ở mẫu làm cho mẫu số bằng không bằng cách dùng một số phép biến đổi thông thường như lim (x^2 - x)/(x^2-1) khi x->1 hoặc có thể dùng hình học để tìm giới hạn cho bài nầy: lim sin(x)/x khi x->0
Nhưng những phương pháp nầy không thể áp dụng được cho lim [ln(x)/(x-1)] khi x->1
Khi xác định giới hạn nầy chúng ta không thể lợi dụng tính chất lim của thương là thương lim vì khi x->1 thì cả tử số lẫn mẫu số đều tiến đến 0 và 0/0 là không xác định.
Một phương pháp có hệ thống được ra đời dùng cho việc xác định giới hạn cho các dạng vô định được gọi là quy tắc L' Hospital

Giả sử rằng f và g đều có đạo hàm và g'(x) khác 0. Giả sử rằng:
lim f(x)=0 khi x->a và lim g(x)=0 khi x->a, hoặc
lim f(x)=+/-vô cực và lim g(x)=+/-vô cực khi x->a thì
lim f(x)/g(x)=lim f'(x)/g'(x) khi x->a
nếu giới hạn bên phải tồn tại (hoặc là vô cực hoặc trừ vô cực)

vd

l = lim [√(4x + 1) - √(9x - 2) + 1] / [√(5x + 7) - 3]
x --> 2

= lim [√(4x + 1) - 3 + 4 - √(9x - 2)] / [√(5x + 7) - 3]
x --> 2

= lim[√(4x + 1) - 3]/[√(5x + 7) - 3] + lim [4 - √(9x - 2)]/[√(5x + 7) - 3]
x --> 2

*lim[√(4x + 1) - 3]/[√(5x + 7) - 3] =
x --> 2

= lim(4x - 8)[√(5x + 7) + 3.√(5x + 7) + 9] / [√(4x + 1) + 3][5x - 20]
x --> 2

= lim 4[√(5x + 7) + 3.√(5x + 7) + 9] / [√(4x + 1) + 3]5(x + 2)
x --> 2

= 4.[3 + 3 + 9] / 5[3 + 3](2 + 2) = 9 / 10

*lim [4 - √(9x - 2)]/[√(5x + 7) - 3] =
x --> 2

= lim (18 - 9x)[√(5x + 7) + 3.√(5x + 7) + 9] / [4 + √(9x - 2)][5x - 20]
x --> 2

= lim (-9)[√(5x + 7) + 3.√(5x + 7) + 9] / [4 + √(9x - 2)]5(x + 2)
x --> 2

= (-9)[3 + 3 + 9] / [4 + 4]5(2 + 2) = - 243 / 160

Vây:
l = 9/10 - 243/160 = - 99 /160